LIBRARY ORIENTATION FOR GRADUATE STUDENTS

DEPARTMENT OF STATISTICS AND APPLIED PROBABILITY

7 Aug 2017
Stephanie Ng
Science Resource Librarian
Science Library
OUTLINE

• Essential information
• Services for Graduate Students
• Resources
• How librarians can help?
• Facilities
ESSENTIAL INFORMATION
Rich Collections & Resources

(As at June 2016)

Total Annual Statistics

- Collections: 2,201,269 unique titles
- Membership: 63,252 registered members
- Loans: 486,046 loans

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Books (Unique Title)</td>
<td>875,393*</td>
<td>367,681</td>
<td>44,170</td>
<td>30,999</td>
<td>123,374</td>
<td>26,089</td>
<td>35,305</td>
<td>1,456,068</td>
</tr>
<tr>
<td>Books (Volume)</td>
<td>1,658,283*</td>
<td>691,970</td>
<td>131,761</td>
<td>66,774</td>
<td>264,750</td>
<td>28,937</td>
<td>65,439</td>
<td>2,907,914</td>
</tr>
<tr>
<td>Periodicals</td>
<td>34,940 (2,318)</td>
<td>5,017 (519)</td>
<td>2,887 (566)</td>
<td>2,091 (442)</td>
<td>4,267 (595)</td>
<td>284 (176)</td>
<td>105 (72)</td>
<td>49,681 (4,688)</td>
</tr>
<tr>
<td>Subscriptions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internet Resources</td>
<td></td>
<td>e-journal : 41,278</td>
<td>e-newspaper : 264</td>
<td>e-books : 637,023</td>
<td>reference databases : 316</td>
<td></td>
<td></td>
<td>678,881</td>
</tr>
<tr>
<td>CD-ROMs</td>
<td>1,318</td>
<td>178</td>
<td>40</td>
<td>325</td>
<td>269</td>
<td>8</td>
<td>31</td>
<td>2,010</td>
</tr>
<tr>
<td>Media Materials</td>
<td>23,847</td>
<td>2,269</td>
<td>253</td>
<td>1,617</td>
<td>1,656</td>
<td>136</td>
<td>14,363</td>
<td>47,832</td>
</tr>
<tr>
<td>Microforms</td>
<td></td>
<td>Microfilm : 9,036</td>
<td>Microfiche : 14,393</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23,429</td>
</tr>
<tr>
<td>Area (m²)</td>
<td>18,197 (Located in one building)</td>
<td>2,909</td>
<td>2,150</td>
<td>6,500</td>
<td>3,539</td>
<td>890</td>
<td>34,185 m²</td>
<td></td>
</tr>
<tr>
<td>Seating</td>
<td>2,173</td>
<td>254</td>
<td>337</td>
<td>365</td>
<td>1,200</td>
<td>821</td>
<td>86</td>
<td>5,236 seats</td>
</tr>
</tbody>
</table>

NUS Libraries Portal
http://www.lib.nus.edu.sg

Searching for books, articles & more!

Important Links and Information

Library Opening Hours & Calendars

News & Events @ NUS Libraries
OPENING HOURS

SEMESTER TIME
MON-FRI 8AM TO 10PM
SAT & SUN 10AM TO 5PM

VACATION
MON-FRI 8:30AM TO 7PM
SAT 10AM TO 5PM
SUN & PH CLOSE
SERVICES for GRADUATE STUDENTS
LOAN PRIVILEGES FOR GRADUATE STUDENTS

Loan Entitlement

30 Items
28 Days
3 Online Renewals

How do I Borrow a Book?
SERVICES FOR GRADUATE STUDENTS

Quick Links
- My Library Account
- Library PIN
- Facilities Booking
- Contact
- FAQ
- Subject Guides

Services for Graduate Students

<table>
<thead>
<tr>
<th>Services</th>
<th>Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essential Guides</td>
<td>New to NUS, Research Help, Research Tools, Subject Guides</td>
</tr>
<tr>
<td>Contact Us</td>
<td>Ask a Librarian Chat, Schedule an Advisory Session with Your Resource Librarian</td>
</tr>
<tr>
<td>Loans Services</td>
<td>Interlibrary Loan, Intra-library Loan, Loan of library materials, Print Form to Pay Fines, Renew loans, Report a Lost Book, Request for books to be delivered/collated outside NUS, Reserve Items</td>
</tr>
<tr>
<td>Recommendation to Purchase New Materials</td>
<td>Recommended Book, Recommended Journals, Recommended Media Materials</td>
</tr>
<tr>
<td>Other Services</td>
<td>Book ArtsBuzz & Central Library Lobby, Book discussion room, Change Mailbox/Email Address, Network printing, Interloan ext</td>
</tr>
</tbody>
</table>

Loan Entitlement
- **Students**: Honours & Graduate Student
- **30 books**

Online Renewals
- **3 times**

Main Shelves Books
- **28 days**

RBR books
- **2 hours/ overnight**

Bound Journals & Special Library materials
- **1 day**
 (Not applicable in CJ Koh Law Library & Medical Library)
Services for Graduate Students

Quick Links
- My Library Account
- Library PIN
- Facilities Booking
- Contact
- FAQs
- Subject Guides

Essential Guides
- New to NUS
- Research Help
- Research Tools
- Subject Guides

Contact Us
- Ask a Librarian
- Chat
- Schedule an Advisory Session with Your Resource Librarian

Loans Services
- Interlibrary Loan
- Intra-library Loan
- Print Form to Pay Fines
- Renew Loans
- Report a Lost book
- Reserve Items

Recommendation to Purchase New Materials
- Recommend Books
- Recommend Journals
- Recommend Media Materials

Document Delivery Services (DDS)
- Purchase Articles/Book Chapters/Conference Papers Not Found in NUS Libraries (Check Status), (For my own assignment)
- Purchase Articles/Book Chapters/Conference Papers Not Found in NUS Libraries (For research assistants of Yale-NUS College faculty members)

Other Services
- Book ArtsBuzz & Central Library Lobby
- Book Discussion Room
- Change Mail/Email Address
- Network Printing
SERVICES FOR GRADUATE STUDENTS

• **Intra-Library Loan**
 ✓ loan within NUS Libraries eg Central Library (CL) to Science Library (SC)

• **Inter-Library Loan**
 ✓ from other libraries eg Australian University to NUS Libraries

• **Document Delivery Services (DDS)**
 ✓ Request *journal articles, book chapters or conference papers* that are not available in NUS Libraries
DISCOVERY SERVICE: FINDMORE@NUSL
Measuring reproducibility of high-throughput experiments

Reproducibility is essential to reliable scientific discovery in high-throughput experiments. In this work we propose a unified approach to measure the reproducibility of findings identified from replicate experiments and identify putative discoveries using reproducibility. Unlike the usual scalar measures of reproducibility, our approach creates a curve, which quantitatively assesses when the findings are no longer consistent across replications.
MEASURING REPRODUCIBILITY OF HIGH-THROUGHPUT EXPERIMENTS

BY QUNHUA LI, JAMES B. BROWN, HAIYAN HUANG AND PETER J. BICKEL

University of California at Berkeley

Reproducibility is essential to reliable scientific discovery in high-throughput experiments. In this work we propose a unified approach to measure the reproducibility of findings identified from replicate experiments and identify putative discoveries using reproducibility. Unlike the usual scalar measures of reproducibility, our approach creates a curve, which quantitatively assesses when the findings are no longer consistent across replicates. Our curve is fitted by a copula mixture model, from which we derive a quantitative reproducibility score, which we call the "irreproducible discovery rate" (IDR) analogous to the FDR. This score can be computed at each of pair of replicate ranks and permits the principled setting of thresholds both for assessing reproducibility and combining replicates.

Since our approach permits an arbitrary scale for each replicate, it provides useful descriptive measures in a wide variety of situations to be explored. We study the performance of the algorithm using simulations and give a heuristic analysis of its theoretical properties. We demonstrate the effectiveness of our method in a ChIP-seq experiment.

1. Introduction. High-throughput profiling technologies play an indispensable role in modern biology. By studying a large number of candidates in a single experiment and assessing their significance using data analytical tools, high-throughput technologies allow researchers to effectively select potential targets for further studies. Despite their ubiquitous presence in biological research, it is known that any single experimental output from a high-throughput assay is often subject to substantial variability. Reproducibility of high-throughput assays, such as the level of agreement between results from replicate experiments across (biological or technical) replicate samples, test sites or experimental or data analytical platforms, is a constant concern in their scientific applications [e.g., MAQC consortium (2006) in microarray experiments, Park (2009) in ChIP-seq technology]. Metrics that objectively assess the reproducibility of high-throughput assays are important for producing reliable scientific discoveries and monitoring the performances of data generating procedures.

An important criterion for assessing reproducibility of results from high-throughput experiments is how reproducibly top ranked signals are reported in
Reading the Library Catalogue

Author: Freedman, David, 1938-

Title: Statistical models: theory and practice / David A. Freedman.

Imprint: Cambridge ; New York : Cambridge University Press, 2009.

Edition: Rev. ed.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>CALL #</th>
<th>STACK#</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC Books</td>
<td>QA279 Fre 2009</td>
<td>DUE 02-09-17</td>
<td>AVAILABLE</td>
</tr>
<tr>
<td>CL Books</td>
<td>QA279 Fre 2009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Descrip. 442 p. : ill. ; 25 cm.

Bibliog. Includes bibliographical references and index.

Subject
- Linear models (Statistics)
- Bootstrap (Statistics)
- Mathematical statistics

ISBN
- 9780521743853 (pbk.)
- 9780521112437
- 0521112435
- 0521743850 (pbk.)
ONLINE RENEWAL, PLACE RESERVATION, CLOSED STACKS REQUEST: MY LIBRARY ACCOUNT (MYLINC)

Login to MyLINC

Please enter the following information. To protect your privacy, do remember to logout after viewing your library record.

Matric/Staff/Membership number:

E.g. Staff:
- 012345, 12345A
Students:
- A0135790X, U081234B, HT0984604
External members & Term card holders:
- LP01234Z, T123456

Library PIN:

Forgotten your PIN?
MY LIBRARY ACCOUNT

You are logged in as **STAFF** to NUS Libraries Sierra Live Server (linc.nus.edu.sg) / All Locations as **NG YEN PING, STEPHANIE ,MISS**

- Modify your PIN
- 0 requests (holds)
- Search the Catalog
- Preferred Searches
- My Reading History

<table>
<thead>
<tr>
<th>RENEW</th>
<th>TITLE</th>
<th>BARCODE</th>
<th>STATUS</th>
<th>CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>Multivariate data analysis / Joseph F. Hair, Jr. ... [et al.]</td>
<td>6343512C</td>
<td>DUE 05-09-16</td>
<td>QA278 Mul 2006</td>
</tr>
<tr>
<td>☐</td>
<td>Research in medical and biological sciences : from planning and preparation to grant application and publication / edited by Petter Laake, University of Oslo, Oslo, Norway, Haakon Breien Benestad, University of Oslo, Oslo, Norway, Bjorn Reino Olsen, Harvard University, Cambridge, USA</td>
<td>6392632J</td>
<td>DUE 05-09-16</td>
<td>R850 Res 2015</td>
</tr>
<tr>
<td>☐</td>
<td>The Kew plant glossary : an illustrated dictionary of plant identification terms / Henk J. Beentje.</td>
<td>6392624A</td>
<td>DUE 05-09-16</td>
<td>QK9 Bee 2016</td>
</tr>
</tbody>
</table>
Options, futures, and other derivatives / John C. Hull, Maple Financial Group Professor of Derivatives and Risk Management Joseph L. Rotman School of Management, University of Toronto.

Imprint

Edition
Tenth Edition.

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>CALL #</th>
<th>STACK#</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC RBR (Loans Desk)</td>
<td>HG6024 Hul 2017</td>
<td></td>
<td>AVAILABLE</td>
</tr>
</tbody>
</table>

Descrip.
xxiii, 868 pages : illustrations ; 27 cm.

txt txt rdaccontent.
unmediated n rdamedia.
volume nc rdacarrier.

Note
Revised edition of the author's Options, futures, and other derivatives, [2015]
Includes indexes.

Contents

Subject
Futures.
Stock options.
Derivative securities.

ISBN
9780134472089
013447208X
PAST EXAM PAPERS

Welcome to SM-SEA Databases
Enter your User ID and Password

Login to InfoGate

User ID:
Password:
Domain: NUSSTU

NATIONAL UNIVERSITY OF SINGAPORE
ST5202 Applied Regression Analysis
(Semester 2: AY 2013-2014)
Time Allowed: 2 Hours

INSTRUCTIONS TO CANDIDATES
1. This examination paper contains FOUR (4) questions and comprises SIXTEEN (16) printed pages (including the present page).
2. Candidates must answer ALL questions on this paper. The total mark is 60.
3. Non-programmable calculators can be used.
4. This is a CLOSED BOOK examination. Two double-sided A4 size help sheets are allowed.
5. We use the same notations in this paper as our lecture notes if not stated otherwise.
6. Write your matriculation number and seat number in the spaces below. Do not write your name.

Matriculation No:
Seat No:

<table>
<thead>
<tr>
<th>Question</th>
<th>Points scored</th>
<th>Max. points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Total

60
RESOURCES
Connecting you to Learning & Research resources
Extensive electronic & print information resources 24 x 7
DATABASES FOR SCIENCE GRADUATE STUDENTS

<table>
<thead>
<tr>
<th>Topics Covered</th>
<th>Database Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sciences</td>
<td>Web of Science, BIOSIS Preview, PubMed</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Reaxys, SciFinder, FSTA (Food Science & Technology Abstracts), Powder diffraction file (PDF-4)</td>
</tr>
<tr>
<td>Materials Science</td>
<td>SpringerMaterials, Engineering Village (Compendex, Inspec)</td>
</tr>
<tr>
<td>Physics</td>
<td>Web of Science, Engineering Village (Compendex, Inspec), Physical Review</td>
</tr>
</tbody>
</table>
DATABASES FOR SCIENCE GRADUATE STUDENTS

<table>
<thead>
<tr>
<th>Topics Covered</th>
<th>Database Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidisciplinary</td>
<td>Scopus, Proquest, Ebsohost, ScienceDirect</td>
</tr>
<tr>
<td>Theses (NUS)</td>
<td>ScholarBank@NUS (2003 onwards – NUS Masters by Research & PhD Theses), LINC (hardcopy prior to 2003)</td>
</tr>
<tr>
<td>Theses (US & UK)</td>
<td>ProQuest Dissertations & Theses Global</td>
</tr>
<tr>
<td>Patents</td>
<td>Patsnap</td>
</tr>
<tr>
<td>Standards</td>
<td>British Standards Online (BSOL), ASTM Compass, IHS standards expert - IEC, IEEE Xplore</td>
</tr>
<tr>
<td>Newspapers</td>
<td>Factiva, Lexis-Nexis Academic</td>
</tr>
</tbody>
</table>
E-RESOURCES : E-BOOKS, E-JOURNALS

E-BOOKS

To save titles to your My Favourites list, please log in to myPortal and add item to the widgets provided.

Browse E-Books By Subject

<table>
<thead>
<tr>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra & number theory</td>
</tr>
<tr>
<td>Applied mathematics</td>
</tr>
<tr>
<td>Geometry & topology</td>
</tr>
<tr>
<td>Mathematical analysis</td>
</tr>
<tr>
<td>Mathematics</td>
</tr>
<tr>
<td>Mechanics</td>
</tr>
<tr>
<td>Numerical analysis</td>
</tr>
<tr>
<td>Probability</td>
</tr>
<tr>
<td>Statistics</td>
</tr>
</tbody>
</table>

Mathematics & Statistics

- Algebra & number theory
- Applied mathematics
- Geometry & topology
- Mathematical analysis
- Mathematics
- Mechanics
- Numerical analysis
- Probability
- Statistics
PROXY BOOKMARKLET

Google search for "linear regression models"

Scholar search for "Applied linear regression models" by MH Kutner, C Nachtsheim, J Neter

Bayesian model averaging for linear regression models

Abstract: We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest.
Abstract

We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferences about quantities of interest. This approach is often not practical. In this article we offer two alternative approaches. First, we describe an ad hoc procedure, “Occam’s window,” which indicates a small set of models over which a model average can be computed. Second, we describe a Markov chain Monte Carlo approach that directly approximates the exact solution. In the presence of model uncertainty, both of these model averaging procedures provide better predictive performance than any single model that might reasonably have been selected. In the extreme case where there are many candidate predictors but no relationship between any of them and the response, standard variable selection procedures often choose some subset of variables that yields a high \(R^2 \) and a highly significant overall \(F \) value. In this situation, Occam’s window usually indicates the null model (or a small number of models including the null model) as the only one (or ones) to be considered thus largely resolving the problem of selecting significant models when there is no signal in the data. Software to implement our methods is available from StatLib.

Key Words: Bayes factor, Markov chain Monte Carlo model composition, Model uncertainty, Occam’s window, Posterior model probability
Bayesian Model Averaging for Linear Regression Models

Adrian E. RAFFERTY, David MADIGAN, and Jennifer A. HOSTIN

We consider the problem of accounting for model uncertainty in linear regression models. Conditioning on a single selected model ignores model uncertainty, and thus leads to the underestimation of uncertainty when making inferences about quantities of interest. A Bayesian solution to this problem involves averaging over all possible models (i.e., combinations of predictors) when making inferences about quantities of interest. This approach is often not practical. In this article we offer two alternative approaches. First, we describe an ad hoc procedure, “Occam’s window,” which indicates a small set of models over which a model average can be computed. Second, we describe a Markov chain Monte Carlo approach that directly approximates the exact solution. In the presence of model uncertainty, both of these model averaging procedures provide better predictive performance than any single model that might reasonably have been selected. In the extreme case where there are many candidate predictors but no relationship between any of them and the response, standard variable selection procedures often choose some subset of variables that yields a high R² and a highly significant overall F value. In this situation, Occam’s window usually indicates the null model (or a small number of models including the null model) as the only one (or ones) to be considered thus largely resolving the problem of selecting significant models when there is no signal in the data. Software to implement our methods is available from StatLib.

KEY WORDS: Bayes factor; Markov chain Monte Carlo model composition; Model uncertainty; Occam’s window; Posterior model probability.

1. INTRODUCTION

Selecting subsets of predictor variables is a basic part of building a linear regression model. The objective of variable selection is typically stated as follows: Given a dependent variable Y and a set of a candidate predictors X₁, X₂, ..., Xₖ, find the “best” model of the form

\[Y = \beta_0 + \sum_{j=1}^{k} \beta_j X_j + \epsilon, \]

where X₁, X₂, ..., Xₖ is a subset of X₁, X₂, ..., Xₖ. Here “best” may have any of several meanings; for example, the model providing the most accurate predictions for new cases exchangeable with those used to fit the model.

A typical approach to data analysis is to carry out a model selection exercise leading to a single “best” model and then to make inferences as if the selected model were the true model. However, this ignores a major component of uncertainty—namely, uncertainty about the model itself (Draper 1995, Hodges 1987, Lemmer 1978, Moulton 1991, Raftery 1988, 1996). As a consequence, uncertainty about quantities of interest can be underestimated. (For striking examples of this see Draper 1995, Kaas and Raftery 1995, Madigan and York 1995, Miller 1984, Raftery 1996, and Regal and Hook 1991.) A complete Bayesian solution to this problem involves averaging over all possible combinations of predictors when making inferences about quantities of interest; indeed, this approach provides optimal predictive ability (Madigan and Raftery 1994). However, in many applications this averaging will not be a practical proposition. Here we present two alternative approaches.

First, we extend the Bayesian graphical model selection algorithm of Madigan and Raftery (1994) to linear regression models. We refer to this algorithm as “Occam’s window.” This approach involves averaging over a reduced set of models. Second, we directly approximate the complete solution by applying the Markov chain Monte Carlo model composition (MCMC) approach of Madigan and York (1993) to linear regression models. In this approach the posterior distribution of a quantity of interest is approximated by a Markov chain Monte Carlo method that generates a process that moves through model space. We show in an example that both of these model averaging approaches provide better predictive performance than any single model that might reasonably have been selected.

Friedman (1983) pointed out that when there are many predictors and there is no relationship between the predictors and the response, variable selection techniques can lead to a model with a high R² and a highly significant overall F value. By contrast, when a dataset is generated with no relationship between the predictors and the response, Occam’s window typically indicates the null model as the “best” model or as one of a small set of “best” models, thus largely resolving the problem of selecting a significant model for a null relationship.

FACILITIES
Creating spaces for collaboration
OPEN COLLABORATIVE SPACES

CollabArena

Innovate © Network © Discuss
COMFORTABLE STUDY AREA

Discussion Rooms

Quiet Reading Area

Seminar Rooms

Individual carrels
VARIETY OF SPACES

Study Carrels for Graduate Students

Training Room

E-Resource PCs

Leisure Reading & Newspaper Corner
HOW LIBRARIANS CAN HELP
Subject Guides

Science

Browse our best resources, organized by subject

Showing 19 Guides

<table>
<thead>
<tr>
<th>Subject</th>
<th>Date</th>
<th>Views</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrophysics (Yale-NUS College)</td>
<td>Dec 29, 2018</td>
<td>233</td>
</tr>
<tr>
<td>Biological and Life Sciences</td>
<td>Aug 4, 2017</td>
<td>1480</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Aug 7, 2017</td>
<td>3582</td>
</tr>
<tr>
<td>Chemistry (Yale-NUS College)</td>
<td>Dec 20, 2018</td>
<td>170</td>
</tr>
<tr>
<td>Computer Science (Yale-NUS College)</td>
<td>Dec 20, 2018</td>
<td>100</td>
</tr>
<tr>
<td>Disaster Studies (Yale-NUS College)</td>
<td>Dec 20, 2018</td>
<td>88</td>
</tr>
<tr>
<td>Energy (Yale-NUS College)</td>
<td>Jul 17, 2017</td>
<td>202</td>
</tr>
<tr>
<td>Environmental Studies</td>
<td>Jul 12, 2017</td>
<td>103</td>
</tr>
<tr>
<td>Finding and Using Images (Yale-NUS College)</td>
<td>Dec 28, 2010</td>
<td>156</td>
</tr>
<tr>
<td>Food Science & Technology (FST)</td>
<td>Jul 17, 2017</td>
<td>620</td>
</tr>
<tr>
<td>General Science Happenings: In Yale-NUS College</td>
<td>Aug 1, 2017</td>
<td>91</td>
</tr>
<tr>
<td>Life Sciences (Yale-NUS College)</td>
<td>Dec 20, 2010</td>
<td>117</td>
</tr>
<tr>
<td>Mathematics and Statistics (Yale-NUS College)</td>
<td>Mar 14, 2017</td>
<td>123</td>
</tr>
<tr>
<td>Patents</td>
<td>Jul 25, 2017</td>
<td>1024</td>
</tr>
<tr>
<td>Pharmacy</td>
<td>Aug 7, 2017</td>
<td>4519</td>
</tr>
<tr>
<td>Physics</td>
<td>Jul 17, 2017</td>
<td>702</td>
</tr>
<tr>
<td>Physics (Yale-NUS College)</td>
<td>Dec 29, 2018</td>
<td>59</td>
</tr>
</tbody>
</table>
ADVISORY SERVICE, TUTORIALS & TOURS

Library Tutorials

Advisory Service

Library Tours
ONLINE FAQs & CHAT

Library FAQs - Your one stop for all answers on NUS Libraries.

Online FAQs

- How do I change or modify my library PIN or password?
- I forgot or lost my library PIN or password. What should I do to get a new one?
- What is the difference between my Library PIN and NUSNET ID and Password?
- Can I return an item borrowed from one NUS Library (say Central Library) to another library (either bookdrop or loan desk of say CJ Koh Law Library)?
- Can I return an NUS Library book to any NLB Library? For members of NUS Libraries only.
- Can I book the Central Library Lobby or ArtsBuzz for exhibits? What about Central Library Forum?
- How do I return the books that I borrowed from Central Library at Science Library?

Popular Topics

- Electronic resources
- Research Facilities
- Loans
- EndNote
- Find More@NUSL
- ScholarBank@NUS
- E-Reserves
- Music
- E-Books
- E-Tutorials
- Questions
- Medical
- Bookdrops
- Open access
- Document delivery
- Business
- Yale-NUS
- Theses
- Chinese
- Science
- Discussion rooms

LIVE CHAT

- Service Hours: Monday - Friday, 10 am - 4 pm excluding public holidays.
- For members of NUS Libraries only.
- This service is for general enquiries and might be unsuitable for long complex queries.
- Do check the FAQ or Library Instructions site to see if you can find the answer there.

Chat with a Librarian!
Discover the handy library resources, services and facilities that can help you throughout your stay in NUS!

18, 22 & 24 Aug
12nn-1pm
Training Room, Level 6
NUS LIBRARIES

BOOK DONATION DRIVE 2017

4 MAY 2017 TO 18 AUGUST 2017

Collection boxes will be placed at all NUS Libraries.

Books collected will be priced at our discretion and sold during E-Resource Discovery Day 2017
Recruitment of Student Assistants

If you’re interested in working in the library… you’re wanted!

We are looking for Student Assistants!

Send your resume to us at sclib@nus.edu.sg
WISHING YOU SUCCESS IN YOUR ACADEMIC PURSUIT

SCIENCE RESOURCE LIBRARIANS

EMAIL: sclib@nus.edu.sg

CALL: 65162454